

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Kubernetes Fundamentals


	Chapter 0: Bringing up Kubernetes Cluster with Vagrant [https://github.com/schoolofdevops/kubernetes-fundamentals/blob/master/tutorials/kube-cluster-vagrant.md]


	Chapter 1: Installing Kubernetes Cluster [https://github.com/schoolofdevops/kubernetes-fundamentals/blob/master/tutorials/1.%20install_kubernetes.md]


	Chapter 2: Configuring Kubernetes [https://github.com/schoolofdevops/kubernetes-fundamentals/blob/master/tutorials/configs.md]


	Chapter 3: Deploying a Pod [https://github.com/schoolofdevops/kubernetes-fundamentals/blob/master/tutorials/deploying_pods.md]


	Chapter 4: Maintaining Fleet with Replication Controller [https://github.com/schoolofdevops/kubernetes-fundamentals/blob/master/tutorials/3.%20using_replication_controller.md]


	Chapter 5: Exposing App with Service  [https://github.com/schoolofdevops/kubernetes-fundamentals/blob/master/tutorials/exposing_app_with_service.md]


	Chapter 6: Deploying a New Version without Downtime with Rolling Updates  [https://github.com/schoolofdevops/kubernetes-fundamentals/blob/master/tutorials/4.%20rolling_updates_and_zero_downtime_deployments.md]


	Chapter 7: Replica Sets and Deployments  [https://github.com/schoolofdevops/kubernetes-fundamentals/blob/master/tutorials/2.%20kubernetes_deployment.md]


	Chapter 8: Auto Scaling  [https://github.com/schoolofdevops/kubernetes-fundamentals/blob/master/tutorials/6.%20Kubernetes%20Autoscaling.md]


	Chapter 9: Deploying Voting App   [https://github.com/schoolofdevops/kubernetes-fundamentals/blob/master/tutorials/6.%20deploying_sample_app.md]








          

      

      

    

  

    
      
          
            
  
Compatibility

Kubernetes is an open-source system for automating deployment, scaling, and management of containerized applications.

The below steps are applicabe for the below mentioned OS

| OS | Version | Codename || --- | --- | -- || Ubuntu | 16.04 | Xenial |




Base Setup

** Skip this step and scroll to Initializing Master if you have setup nodes with vagrant**

On all nodes which would be part of this cluster, you need to do the base setup as described here,


Create Kubernetes Repository

We need to create a repository to download Kubernetes.

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -





cat <<EOF > /etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF








Installation of the packages

We should update the machines before installing so that we can update the repository.

apt-get update -y





Installing all the packages with dependencies:

apt-get install -y docker.io kubelet kubeadm kubectl kubernetes-cni





rm -rf /var/lib/kubelet/*








Setup sysctl configs

In order for many container networks to work, the following needs to be enabled on each node.

sysctl net.bridge.bridge-nf-call-iptables=1





The above steps has to be followed in all the nodes.






Initializing Master

This tutorial assumes kube-01  as the master and used kubeadm as a tool to install and setup the cluster. This section also assumes that you are using vagrant based setup provided along with this tutorial. If not, please update the IP address of the master accordingly.

To initialize master, run this on kube-01

kubeadm init --apiserver-advertise-address 192.168.12.10 --pod-network-cidr=192.168.0.0/16






Initialization of the Nodes (Previously Minions)

After master being initialized, it should display the command which could be used on all worker/nodes to join the k8s cluster.

e.g.

kubeadm join --token c04797.8db60f6b2c0dd078 192.168.12.10:6443 --discovery-token-ca-cert-hash sha256:88ebb5d5f7fdfcbbc3cde98690b1dea9d0f96de4a7e6bf69198172debca74cd0





Copy and paste it on all node.


Troubleshooting Tips

If you lose  the join token, you could retrieve it using

kubeadm token list





On successfully joining the master, you should see output similar to following,

root@kube-03:~# kubeadm join --token c04797.8db60f6b2c0dd078 159.203.170.84:6443 --discovery-token-ca-cert-hash sha256:88ebb5d5f7fdfcbbc3cde98690b1dea9d0f96de4a7e6bf69198172debca74cd0
[kubeadm] WARNING: kubeadm is in beta, please do not use it for production clusters.
[preflight] Running pre-flight checks
[discovery] Trying to connect to API Server "159.203.170.84:6443"
[discovery] Created cluster-info discovery client, requesting info from "https://159.203.170.84:6443"
[discovery] Requesting info from "https://159.203.170.84:6443" again to validate TLS against the pinned public key
[discovery] Cluster info signature and contents are valid and TLS certificate validates against pinned roots, will use API Server "159.203.170.84:6443"
[discovery] Successfully established connection with API Server "159.203.170.84:6443"
[bootstrap] Detected server version: v1.8.2
[bootstrap] The server supports the Certificates API (certificates.k8s.io/v1beta1)

Node join complete:
* Certificate signing request sent to master and response
  received.
* Kubelet informed of new secure connection details.

Run 'kubectl get nodes' on the master to see this machine join.










Setup the admin client - Kubectl

On Master Node

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config










Installing CNI with Weave

Installing overlay network is necessary for the pods to communicate with each other across the hosts. It is necessary to do this before you try to deploy any applications to your cluster.

There are various overlay networking drivers available for kubernetes. We are going to use Weave Net.


export kubever=$(kubectl version | base64 | tr -d '\n')
kubectl apply -f "https://cloud.weave.works/k8s/net?k8s-version=$kubever"








Validating the Setup

You could validate the status of this cluster, health of pods and whether all the components are up or not by using a few or all of the following commands.

To check if nodes are ready

kubectl get nodes





[ Expected output ]

root@kube-01:~# kubectl get nodes
NAME      STATUS    ROLES     AGE       VERSION
kube-01   Ready     master    9m        v1.8.2
kube-02   Ready     <none>    4m        v1.8.2
kube-03   Ready     <none>    4m        v1.8.2





Additional Status Commands

kubectl version

kubectl cluster-info

kubectl get pods -n kube-system

kubectl get events





It will take a few minutes to have the cluster up and running with all the services.


Possible Issues


	Nodes are node in Ready status


	kube-dns is crashing constantly


	Some of the systems services are not up




Most of the times, kubernetes does self heal, unless its a issue with system resources not being adequate. Upgrading resources or launching it on bigger capacity VM/servers solves it. However, if the issues persist, you could try following techniques,

Troubleshooting Tips

Check events

kubectl get events





Check Logs

kubectl get pods -n kube-system

[get the name of the pod which has a problem]

kubectl logs <pod> -n kube-system





e.g.

root@kube-01:~# kubectl logs kube-dns-545bc4bfd4-dh994 -n kube-system
Error from server (BadRequest): a container name must be specified for pod kube-dns-545bc4bfd4-dh994, choose one of:
[kubedns dnsmasq sidecar]


root@kube-01:~# kubectl logs kube-dns-545bc4bfd4-dh994  kubedns  -n kube-system
I1106 14:41:15.542409       1 dns.go:48] version: 1.14.4-2-g5584e04
I1106 14:41:15.543487       1 server.go:70] Using

....










Enable Kubernetes Dashboard

After the Pod networks is installled, We can install another add-on service which is Kubernetes Dashboard.

Installing Dashboard:

kubectl apply -f https://gist.githubusercontent.com/initcron/32ff89394c881414ea7ef7f4d3a1d499/raw/baffda78ffdcaf8ece87a76fb2bb3fd767820a3f/kube-dashboard.yaml





This will create a pod for the Kubernetes Dashboard.

To access the Dashboard in th browser, run the below command

kubectl describe svc kubernetes-dashboard -n kube-system





Sample output:

kubectl describe svc kubernetes-dashboard -n kube-system
Name:                   kubernetes-dashboard
Namespace:              kube-system
Labels:                 app=kubernetes-dashboard
Selector:               app=kubernetes-dashboard
Type:                   NodePort
IP:                     10.98.148.82
Port:                   <unset> 80/TCP
NodePort:               <unset> 32756/TCP
Endpoints:              10.40.0.1:9090
Session Affinity:       None





Now check for the node port, here it is 32756, and go to the browser,

masterip:32756





The Dashboard Looks like:

[image: alt text]




Check out the supporting code

Before we proceed further, please checkout the code from the following git repo. This would offer the supporting code for the exercises that follow.

git clone https://github.com/schoolofdevops/k8s-code.git









          

      

      

    

  

    
      
          
            
  
Creating a Deployment

A Deployment is a higher level abstraction which sits on top of replica sets and allows you to manage the way applications are deployed, rolled back at a controlled rate.

Topics


	Rollout a Replicaset


	Deploy a new version : Creates a new replica set every time, moves pods from RS(n) to RS(n+1)


	Rollback to previous RS


	Auto Scaling


	Pause Deployments




File: vote-deploy.yaml

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: vote
  namespace: dev
spec:
  replicas: 8
  selector:
    matchLabels:
      tier: front
      app: vote
    matchExpressions:
      - {key: tier, operator: In, values: [front]}
  revisionHistoryLimit: 4
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxUnavailable: 1
      maxSurge: 2
  minReadySeconds: 20
  paused: false
  template:
    metadata:
      labels:
        app: vote
        role: ui
        tier: front
    spec:
      containers:
      - image: schoolofdevops/vote
        imagePullPolicy: Always
        name: vote
        ports:
        - containerPort: 80
          protocol: TCP





Deployment spec (deployment.spec) contains the following,


	replicaset specs


	selectors


	replicas






	deployment spec


	strategy


	rollingUpdate


	minReadySeconds






	pod template


	metadata, labels


	container specs








Lets  create the Deployment

kubectl apply -f vote_deploy.yaml --record





Now that the deployment is created. To validate,

kubectl get deployment
kubectl get rs
kubectl rollout status deployment/vote
kubectl get pods --show-labels





Sample Output

kubectl get deployments
NAME       DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
vote   3         3         3            1           3m








Scaling a deployment

To scale a deployment in Kubernetes:

kubectl scale deployment/vote --replicas=5





Sample output:

kubectl scale deployment/vote --replicas=5
deployment "vote" scaled









          

      

      

    

  

    
      
          
            
  
Maintaining the Fleet with Replication Controller


	running pods independently will not ensure uptime


	replication controller ensures specified number of replicas are always available


	maintains the fleet


	works similar to auto scaling groups concept that AWS EC2 has


	shortened to rc or rcs





Specs


	spec.template


	spec.selector


	spec.replicas







Problems with single pod

kubectl get pods
kubectl delete pod vote
kubectl get pods






Creating a replication controller

Lets create a replication controller for the vote app

filename vote_rc.yaml

Paste the below code in it:

apiVersion: v1
kind: ReplicationController
metadata:
  name: vote
  namespace: dev
  labels:
    role: rc
    tier: front
spec:
  replicas: 2
  selector:
    app: vote
    role: ui
  template:
    metadata:
      labels:
        app: vote
        role: ui
        tier: front
    spec:
      containers:
      - image: schoolofdevops/vote
        imagePullPolicy: Always
        name: vote
        ports:
        - containerPort: 80
          protocol: TCP





Now to create a Replication controller:

kubectl apply -f vote_rc.yaml





To list replication controllers on a cluster

kubectl get rc





Sample Output:

NAME      DESIRED   CURRENT   READY     AGE
vote   2         2         2         17s





To view detailed information about a specific replication controller

kubectl describe rc vote





Sample Output:

Name:           vote
Namespace:      default
Image(s):       schoolofdevops/vote
Selector:       app=vote,version=v1.0
Labels:         app=vote
                version=v1.0
Replicas:       2 current / 2 desired
Pods Status:    2 Running / 0 Waiting / 0 Succeeded / 0 Failed
No volumes.
Events:
  FirstSeen     LastSeen        Count   From                            SubObjectPath   Type            Reason                  Message
  ---------     --------        -----   ----                            -------------   --------        ------                  -------
  1m            1m              1       {replication-controller }                       Normal          SuccessfulCreate        Created pod: vote-0b3h0
  1m            1m              1       {replication-controller }                       Normal          SuccessfulCreate        Created pod: vote-dd9s1





Scaling Pods

Update vote_rc.yaml to set replicas to 3

spec:
  replicas: 4





Apply changes

kubectl apply -f vote_rc.yaml





$ kubectl get pods

NAME            READY     STATUS    RESTARTS   AGE
vote-0b3h0   1/1       Running   0          2m
vote-4frx0   1/1       Running   0          9s
vote-b44j4   1/1       Running   0          9s
vote-dd9s1   1/1       Running   0          2m





Testing RC

kubectl get pods

NAME            READY     STATUS    RESTARTS   AGE
vote-0b3h0   1/1       Running   0          2m
vote-4frx0   1/1       Running   0          46s
vote-b44j4   1/1       Running   0          46s
vote-dd9s1   1/1       Running   0          2m





Knock off one of the pods,

e.g.

kubectl delete pod vote-dd9s1





Check if creates a new pod

kubectl get pods

NAME            READY     STATUS              RESTARTS   AGE
vote-0b3h0   1/1       Running             0          3m
vote-4frx0   1/1       Running             0          1m
vote-b44j4   1/1       Running             0          1m
vote-r4t2w   0/1       ContainerCreating   0          3s













          

      

      

    

  

    
      
          
            
  
Rolling Updates and Zero Downtime Deployments

A rolling update works by:


	Creating a new replication controller with the updated configuration.


	Increasing/decreasing the replica count on the new and old controllers until the correct number of replicas is reachedor by updating the version of the pod which is running.





Rolling updates with RCs

Now we can see in the RC yaml file that the pods are running with the version of image : schoolofdevops/vote:latest.

Lets try upgrading our pods to the version schoolofdevops/vote:movies without deleting the RC or the pods.

That's how the rolling updates helps in Kubernetes.

To do so:

kubectl rolling-update vote --update-period=20s --image=schoolofdevops/vote:movies





Sample Output:

kubectl rolling-update voting-appp --image=venkatsudharsanam/votingapp-python:10.0.0
Created voting-appp-c7e373b92c0b11bd7c4bb00463658cd9
Scaling up voting-appp-c7e373b92c0b11bd7c4bb00463658cd9 from 0 to 1, scaling down voting-appp from 1 to 0 (keep 1 pods available, don't exceed 2 pods)
Scaling voting-appp-c7e373b92c0b11bd7c4bb00463658cd9 up to 1
Scaling voting-appp down to 0
Update succeeded. Deleting old controller: voting-appp
Renaming voting-appp to voting-appp-c7e373b92c0b11bd7c4bb00463658cd9
replicationcontroller "voting-appp" rolling updated





Now go to the browser and reload the page, you will see the below output:

[image: alt text]

Thus the Rolling Update is successfull.




Deleting the RC:

To delete a replication controller as well as the pods that it controls, use

kubectl delete rc vote











          

      

      

    

  

    
      
          
            
  
Rolling Updates with Deployments

A rolling update works by:


	Creating a new replication controller with the updated configuration.


	Increasing/decreasing the replica count on the new and old controllers until the correct number of replicas is reachedor by updating the version of the pod which is running.





Creating a Deployment

Create a yaml file for the deployment.

We already have a yaml file to create a deployment "vote_deploy.yaml"
Now create the Deployment

kubectl create -f vote_deploy.yaml --record





Now the deployment is created. To check it,

kubectl get deployment





Sample Output

kubectl get deployment
NAME          DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
voting-appp   1         1         1            1           19s






Creating a Service for it

Now to create a service:

kubectl create -f vote-svc.yaml --record





Sample Output:

kubectl create -f vote-svc.yaml --record
service "vote" created





Now to check which port the pod is connected

kubectl describe service vote-svc





Check for the Nodeport here

Sample Output

kubectl describe service vote
Name:                   vote
Namespace:              default
Labels:                 role=svc,tier=front
Selector:               app=vote
Type:                   LoadBalancer
IP:                     10.107.126.18
Port:                   <unset> 80/TCP
NodePort:               <unset> 30410/TCP
Endpoints:              10.40.0.23:80
Session Affinity:       None
No events.





Go to browser and check hostip:NodePort

Here the node port is 30410.

Sample output will be:

[image: alt text]




Rolling update

Now we can see in the RC yaml file that the pods are running with the version of image : venkatsudharsanam/votingapp-python:8.0.0.

Lets try upgrading our pods to the version venkatsudharsanam/votingapp-python:10.0.0 without deleting the RC or the pods.
That's how the rolling updates helps in Kubernetes.

Create a new file

vi voting-app-deployment1.yaml





Now paste the below line in the yaml file

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: vote
  namespace: dev
spec:
  replicas: 3
  selector:
    matchLabels:
      tier: front
      app: vote
    matchExpressions:
      - {key: tier, operator: In, values: [front]}
  minReadySeconds: 20
  template:
    metadata:
      labels:
        app: vote
        role: ui
        tier: front
    spec:
      containers:
      - image: schoolofdevops/vote
        imagePullPolicy: Always
        name: vote
        ports:
        - containerPort: 80
          protocol: TCP





And save the file.

Now to Roll out our update:

kubectl apply -f voting-app-deployment1.yaml --record





Now go to the browser and reload the page. You will see the below output:

[image: alt text]

Now delete all the deployment and services









          

      

      

    

  

    
      
          
            
  
Kubernetes Horizonntal Pod Autoscaling

With Horizontal Pod Autoscaling, Kubernetes automatically scales the number of pods in a replication controller, deployment or replica set based on observed CPU utilization (or, with alpha support, on some other, application-provided metrics).

The Horizontal Pod Autoscaler is implemented as a Kubernetes API resource and a controller. The resource determines the behavior of the controller. The controller periodically adjusts the number of replicas in a replication controller or deployment to match the observed average CPU utilization to the target specified by user


Prerequisites

Heapster monitoring needs to be deployed in the cluster as Horizontal Pod Autoscaler uses it to collect metrics.


Deploying Heapster

Go to the below directory and create the deployment and services.

git clone https://github.com/kubernetes/heapster.git
cd heapster
kubectl apply -f deploy/kube-config/influxdb/
kubectl apply -f deploy/kube-config/rbac/heapster-rbac.yaml





Validate that heapster, influxdb and grafana are started

kubectl get pods -n kube-system
kubectl get svc -n kube-system





Now this will deploy the heapster monitoring.






Run & expose php-apache server

To demonstrate Horizontal Pod Autoscaler we will use a custom docker image based on the php-apache image

kubectl run php-apache --image=gcr.io/google_containers/hpa-example --requests=cpu=200m --expose --port=80  





Sample Output

kubectl run php-apache --image=gcr.io/google_containers/hpa-example --requests=cpu=200m --expose --port=80
service "php-apache" created
deployment "php-apache" created





To verify the created pod:

kubectl get pods





Wait untill the pod changes to running state.




Create Horizontal Pod Autoscaler

Now that the server is running, we will create the autoscaler using kubectl autoscale. The following command will create a Horizontal Pod Autoscaler that maintains between 1 and 10 replicas of the Pods controlled by the php-apache deployment we created in the first step of these instructions.

kubectl autoscale deployment php-apache --cpu-percent=50 --min=1 --max=10





Sample Output

kubectl autoscale deployment php-apache --cpu-percent=50 --min=1 --max=10
deployment "php-apache" autoscaled





We may check the current status of autoscaler by running:

kubectl get hpa





Sample Output:

kubectl get hpa
NAME         REFERENCE                     TARGET    CURRENT   MINPODS   MAXPODS   AGE
php-apache   Deployment/php-apache   50%       0%        1         10        18s








Increase load

Now we can increase the load and trying testing what will happen.
We will start a container, and send an infinite loop of queries to the php-apache service

kubectl run -i --tty -n dev load-generator --image=busybox /bin/sh

Hit enter for command prompt

while true; do wget -q -O- http://php-apache; done





Now open a new window of the same machine.

And check the status of the hpa

kubectl get hpa





Sample Output:

kubectl get hpa
NAME         REFERENCE                     TARGET    CURRENT   MINPODS   MAXPODS   AGE
php-apache   Deployment/php-apache/scale   50%       305%      1         10        3m





Now if you check the pods it will be automatically scaled to the desired value.

kubectl get pods





Sample Output

kubectl get pods
NAME                              READY     STATUS    RESTARTS   AGE
load-generator-1930141919-1pqn0   1/1       Running   0          1h
php-apache-3815965786-2jmm9       1/1       Running   0          1h
php-apache-3815965786-4f0ck       1/1       Running   0          1h
php-apache-3815965786-73w24       1/1       Running   0          1h
php-apache-3815965786-80n2x       1/1       Running   0          1h
php-apache-3815965786-c6w0k       1/1       Running   0          1h
php-apache-3815965786-f06dg       1/1       Running   0          1h
php-apache-3815965786-nfs8d       1/1       Running   0          1h
php-apache-3815965786-phrhs       1/1       Running   0          1h
php-apache-3815965786-z6rnm       1/1       Running   0          1h








Stop load

In the terminal where we created the container with busybox image, terminate the load generation by typing  + C
  
    
    Mini Project: Deploying Multi Tier Application Stack
    

    
 
  
  

    
      
          
            
  
Mini Project: Deploying Multi Tier Application Stack

In this project , you would write definitions for deploying the vote application stack with all components/tiers which include,


	vote ui


	redis


	worker


	db


	results ui





Tasks


	Create deployments for all applications


	Define services for each tier


	Launch/appy the definitions




Following table depicts the state of readiness of the above services.

| App     | Deployment     | Service |
| :------------- | :------------- | :------------- |
| vote       | ready       | ready       |
| redis       | in progress       | ready       |
| worker       | in progress       | in progress       |
| db       | in progress       | todo       |
| results       | todo       | todo       |


Deploying the sample application

To create deploy the sample applications,

kubectl create -f apps/voting/dev





Sample output is like:

deployment "db" created
service "db" created
deployment "redis" created
service "redis" created
deployment "vote" created
service "vote" created
deployment "worker" created
deployment "results" created
service "results" created






To Validatecheck it:

kubectl get svc -n dev





Sample Output is:

kubectl get service voting-app
NAME         CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
vote   10.97.104.243   <pending>     80:31808/TCP   1h





Here the port assigned is 31808, go to the browser and enter

masterip:31808





[image: alt text]

This will load the page where you can vote.

To check the result:

kubectl get service result





Sample Output is:

kubectl get service result
NAME      CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
result    10.101.112.16   <pending>     80:32511/TCP   1h





Here the port assigned is 32511, go to the browser and enter

masterip:32511





[image: alt text]

This is the page where we can see the results of the vote.











          

      

      

    

  

  
    
    Injecting env variables with configmaps
    

    
 
  
  

    
      
          
            
  Configmap is one of the ways to provide configurations to your application.


Injecting env variables with configmaps

Create our configmap for vote app

file:  apps/voting/dev/vote-cm.yaml

apiVersion: v1
kind: ConfigMap
metadata:
  name: vote
  namespace: dev
data:
  OPTION_A: EMACS
  OPTION_B: VI





In the above given configmap, we define two environment variables,


	OPTION_A=EMACS


	OPTION_B=VI




In order to use this configmap in the deployment, we need to reference it from the deployment file.
Check the deployment file for vote add for the following block.

file: vote-deploy.yaml

...
    spec:
      containers:
      - image: schoolofdevops/vote
        imagePullPolicy: Always
        name: vote
        envFrom:
          - configMapRef:
              name: vote
        ports:
        - containerPort: 80
          protocol: TCP
      restartPolicy: Always





So when you create your deployment, these configurations will be made available to your application. In this example, the values defined in the configmap (EMACS and VI) will override the default values(CATS and DOGS) present in your source code.

[image: configmap]




Configmap as a configuration file

In the  topic above we have seen how to use configmap as environment variables. Now let us see how to use configmap as redis configuration file.

Syntax for consuming file as a configmap is as follows

  kubectl create configmap --from-file <CONF-FILE-PATH> <NAME-OF-CONFIGMAP>





We have redis configuration as a file named apps/voting/config/redis.conf. We are going to convert this file into a configmap

kubectl create configmap --from-file apps/voting/config/redis.conf redis





Update your redis-deploy.yaml file to use this confimap.
File: redis-deploy.yaml

    spec:
      containers:
      - image: schoolofdevops/redis:latest
        imagePullPolicy: Always
        name: redis
        ports:
        - containerPort: 6379
          protocol: TCP
        volumeMounts:
          - name: redis
            subPath: redis.conf
            mountPath: /etc/redis.conf
      volumes:
      - name: redis
        configMap:
          name: redis
      restartPolicy: Always








Secrets

Secrets are for storing sensitive data like passwords and keychains. We will see how db deployment uses username and password in form of a secret.

You would define two fields for db,


	username


	password




To create secrets for db you need to generate  base64 format as follows,

echo "admin" | base64
echo "password" | base64





where admin and password are the actual values that you would want to inject into the pod environment.

If you do not have a unix host, you can make use of online base64 utility to generate these strings.

http://www.utilities-online.info/base64





Lets now add it to the secrets file,

File: apps/voting/dev/db-secrets.yaml

apiVersion: v1
kind: Secret
metadata:
  name: db
  namespace: dev
type: Opaque
data:
  POSTGRES_USER: YWRtaW4=
  # base64 of admin
  POSTGRES_PASSWD: cGFzc3dvcmQ=
  # base64 of password





To consume these secrets, update the deployment as

file: db-deploy.yaml.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: db
  namespace: dev
spec:
  replicas: 1
  selector:
    matchLabels:
      tier: back
      app: postgres
  minReadySeconds: 10
  template:
    metadata:
      labels:
        app: postgres
        role: db
        tier: back
    spec:
      containers:
      - image: postgres:9.4
        imagePullPolicy: Always
        name: db
        ports:
        - containerPort: 5432
          protocol: TCP
# Secret definition
        env:
          - name: POSTGRES_USER
            valueFrom:
              secretKeyRef:
                name: db
                key: POSTGRES_USER
          - name: POSTGRES_PASSWD
            valueFrom:
              secretKeyRef:
                name: db
                key: POSTGRES_PASSWD
      restartPolicy: Always









          

      

      

    

  

  
    
    Creating Kubernetes Repository
    

    
 
  
  

    
      
          
            
  
Creating Kubernetes Repository

We need to create a repository to download Kubernetes.

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -





cat <<EOF > /etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF








Installation of the packages

We should update the machines before installing so that we can update the repository.

apt-get update -y





Installing all the packages with dependencies:

apt-get install -y docker.io kubelet kubeadm kubectl kubernetes-cni





rm -rf /var/lib/kubelet/*








Setup sysctl configs

In order for many container networks to work, the following needs to be enabled on each node.

sysctl net.bridge.bridge-nf-call-iptables=1





The above steps has to be followed in all the nodes.





          

      

      

    

  

  
    
    Setup monitoring console for Kubernetes
    

    
 
  
  

    
      
          
            
  In this lesson we are going to cover the following topics


	Setting up monitors


	Configs


	Context


	Namespaces





Setup monitoring console for Kubernetes

Unix screen is a great utility for a devops professional. You could setup a simple monitoring for kubernetes cluster using a screenrc script as follows on kube-01 node (node where kubectl is configured)

file: k8s-code/monitoring/rc.screenrc

screen watch -n 1 kubectl get pods
split
focus down
screen watch -n 1 kubectl get rc
focus bottom





Open a dedicated terminal to run this utility.  Launch it using

screen -c monitoring/deploy.screenrc






Working with Unix Screen

To detach

^a d  





To list existing screen sessions

screen -ls





To re attach

screen  -x <session_id>





To delete a session

screen -X -S <session_id> quit





e.g.

screen -ls
There are screens on:
    26484.pts-2.kube-01 (01/12/2018 06:47:41 AM)    (Detached)
    18472.pts-2.kube-01 (01/12/2018 06:43:21 AM)    (Detached)
2 Sockets in /var/run/screen/S-root.

screen -X -S 26 quit










Listing Configurations

Check current config

kubectl config view





You could also examine the current configs in file cat ~/.kube/config




Creating a dev namespace

Namespaces offers separation of resources running on the same physical infrastructure into virtual clusters. It is typically useful in mid to large scale environments with multiple projects, teams and need separate scopes. It could also be useful to map to your workflow stages e.g. dev, stage, prod.

Lets create a namespace called dev

file: dev_ns.yaml

kind: Namespace
apiVersion: v1
metadata:
  name: dev
  labels:
    name: dev





To create namespace

kubectl apply -f dev_ns.yaml





And switch to it

kubectl config set-context $(kubectl config current-context) --namespace=dev









          

      

      

    

  

  
    
    Deploying Pods
    

    
 
  
  

    
      
          
            
  
Deploying Pods

Life of a pod


	Pending : in progress


	Running


	Succeeded : successfully exited


	Failed


	Unknown





Probes


	livenessProbe : Containers are Alive


	readinessProbe : Ready to Serve Traffic







Resource Configs

Each entity created with kubernetes is a resource including pod, service, deployments, replication controller etc. Resources can be defined as YAML or JSON.  Here is the syntax to create a YAML specification.

AKMS => Resource Configs Specs

apiVersion: v1
kind:
metadata:
spec:





Spec Schema: https://kubernetes.io/docs/user-guide/pods/multi-container/


Common Configurations

Througout this tutorial, we would be deploying differnt components of  example voting application. Lets assume we are deploying it in a dev environment.  Lets create the common specs for this app with the AKMS schema discussed above.

file: common.yml

apiVersion: v1
kind:
metadata:
  name: vote
  labels:
    app: vote
    role: ui
    tier: front
spec:





Lets now create the  Pod config by adding the kind and specs to above schema.

Filename: vote-pod.yaml

apiVersion: v1
kind: Pod
metadata:
  name: vote
  labels:
    app: vote
    role: ui
    tier: front
spec:
  containers:
    - name: vote
      image: schoolofdevops/vote:latest
      ports:
        - containerPort: 80










Launching and operating a Pod

Syntax:

 kubectl apply -f FILE





To Launch pod using configs above,

kubectl apply -f vote-pod.yaml





To view pods

kubectl get pods

kubectl get pods vote





To get detailed info

kubectl describe pods vote





[Output:]

Name:           vote
Namespace:      default
Node:           kube-3/192.168.0.80
Start Time:     Tue, 07 Feb 2017 16:16:40 +0000
Labels:         app=voting
Status:         Running
IP:             10.40.0.2
Controllers:    <none>
Containers:
  vote:
    Container ID:       docker://48304b35b9457d627b341e424228a725d05c2ed97cc9970bbff32a1b365d9a5d
    Image:              schoolofdevops/vote:latest
    Image ID:           docker-pullable://schoolofdevops/vote@sha256:3d89bfc1993d4630a58b831a6d44ef73d2be76a7862153e02e7a7c0cf2936731
    Port:               80/TCP
    State:              Running
      Started:          Tue, 07 Feb 2017 16:16:52 +0000
    Ready:              True
    Restart Count:      0
    Volume Mounts:
      /var/run/secrets/kubernetes.io/serviceaccount from default-token-2n6j1 (ro)
    Environment Variables:      <none>
Conditions:
  Type          Status
  Initialized   True
  Ready         True
  PodScheduled  True
Volumes:
  default-token-2n6j1:
    Type:       Secret (a volume populated by a Secret)
    SecretName: default-token-2n6j1
QoS Class:      BestEffort
Tolerations:    <none>
Events:
  FirstSeen     LastSeen        Count   From                    SubObjectPath           Type            Reason          Message
  ---------     --------        -----   ----                    -------------           --------        ------          -------
  21s           21s             1       {default-scheduler }                            Normal          Scheduled       Successfully assigned vote to kube-3
  20s           20s             1       {kubelet kube-3}        spec.containers{vote}   Normal          Pulling         pulling image "schoolofdevops/vote:latest"
  10s           10s             1       {kubelet kube-3}        spec.containers{vote}   Normal          Pulled          Successfully pulled image "schoolofdevops/vote:latest"
  9s            9s              1       {kubelet kube-3}        spec.containers{vote}   Normal          Created         Created container with docker id 48304b35b945; Security:[seccomp=unconfined]
  9s            9s              1       {kubelet kube-3}        spec.containers{vote}   Normal          Started         Started container with docker id 48304b35b945





Commands to operate the pod

kubectl exec -it vote ps sh

kubectl exec -it vote  sh

kubectl logs vote





delete

kubectl delete pod vote

kubectl get pods










Attach a Volume to the Pod

Lets create a pod for database and attach a volume to it. To achieve this we will need to


	create a volumes definition


	attach volume to container using VolumeMounts property




Volumes are of two types:


	emptyDir


	hostPath




File: db-pod.yaml

apiVersion: v1
kind: Pod
metadata:
  name: db
  labels:
    app: postgres
    role: database
    tier: back
spec:
  containers:
    - name: db
      image: postgres:9.4
      ports:
        - containerPort: 5432
      volumeMounts:
      - name: db-data
        mountPath: /var/lib/postgresql/data
  volumes:
  - name: db-data
    emptyDir: {}





To create this pod,

kubectl apply -f db-pod.yaml

kubectl describe pod db

kubectl get events








Selecting Node to run on

kubectl get nodes --show-labels

kubectl label nodes <node-name> rack=1

kubectl get nodes --show-labels





Update pod definition with nodeSelector

file: vote-pod.yml

apiVersion: v1
kind: Pod
metadata:
  name: vote
  labels:
    app: vote
    role: ui
    tier: front
spec:
  containers:
    - name: vote
      image: schoolofdevops/vote:latest
      ports:
        - containerPort: 80
  nodeSelector:
    rack: '1'





For this change, pod needs to be re created.

kubectl apply -f vote-pod.yaml








Creating Multi Container Pods

file: multi_container_pod.yml

apiVersion: v1
kind: Pod
metadata:
  name: web
  labels:
    app: nginx
    role: ui
    tier: front
spec:
  containers:
    - name: nginx
      image: nginx
      ports:
        - containerPort: 80
      volumeMounts:
      - name: data
        mountPath: /opt/d1
    - name: loop
      image: schoolofdevops/loop
      volumeMounts:
      - name: data
        mountPath: /opt/d1
  volumes:
  - name: data
    emptyDir: {}





To create this pod

kubectl apply -f multi_container_pod.yml





Check Status

root@kube-01:~# kubectl get pods
NAME      READY     STATUS              RESTARTS   AGE
nginx     0/2       ContainerCreating   0          7s
vote      1/1       Running             0          3m





Checking logs, logging in

kubectl logs  web  -c loop
kubectl logs  web  -c nginx

kubectl exec -it web  sh  -c nginx
kubectl exec -it web  sh  -c loop








Exercise

Create a pod definition for redis and deploy.


Reading List :

Node Selectors, Affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/







          

      

      

    

  

  
    
    Exposing Application with a Service
    

    
 
  
  

    
      
          
            
  
Exposing Application with  a Service

Types of Services:


	ClusterIP


	NodePort


	LoadBalancer


	ExternalName




kubectl get pods
kubectl get svc





Sample Output:

NAME                READY     STATUS    RESTARTS   AGE
voting-appp-1j52x   1/1       Running   0          12m
voting-appp-pr2xz   1/1       Running   0          9m
voting-appp-qpxbm   1/1       Running   0          15m





Filename: vote-svc.yaml

---
apiVersion: v1
kind: Service
metadata:
  labels:
    role: svc
    tier: front
  name: vote-svc
  namespace: dev
spec:
  selector:
    app: vote
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  type: NodePort





Save the file.

Now to create a service:

kubectl create -f vote_svc.yaml
kubectl get svc





Now to check which port the pod is connected

kubectl describe service vote-svc





Check for the Nodeport here

Sample Output

Name:                   vote-svc
Namespace:              dev
Labels:                 app=vote
Selector:               app=vote
Type:                   NodePort
IP:                     10.99.147.158
Port:                   <unset> 80/TCP
NodePort:               <unset> 30308/TCP
Endpoints:              10.40.0.2:80,10.40.0.3:80,10.40.0.4:80 + 1 more...
Session Affinity:       None
No events.





Go to browser and check hostip:NodePort

Here the node port is 30308.

Sample output will be:

[image: alt text]





          

      

      

    

  

  
    
    Welcome to Kubernetes Fundamentals by School of Devops
    

    
 
  
  

    
      
          
            
  
Welcome to Kubernetes Fundamentals by School of Devops

This is a Lab Guide which goes along with the Docker and Kubernetes course by School of Devops.

For information about the devops trainign courses visit schoolofdevops.com [http://schoolofdeovps.com].


Team


	Gourav Shah


	Vijayboopathy


	Venkat










          

      

      

    

  

  
    
    <no title>
    

    
 
  
  

    
      
          
            
  apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: nginx-ingress-dep
  labels:
    app: nginx-ingress
spec:
  replicas: 2
  template:
    metadata:
      labels:
        app: nginx-ingress
    spec:
      containers:
      - image: nginxdemos/nginx-ingress:0.9.0
        name: nginx-ingress
        ports:
        - containerPort: 80
          hostPort: 80
---
apiVersion: v1
kind: Service
metadata:
  name: nginx-ingress-svc
  labels:
    app: nginx-ingress
spec:
  type: NodePort
  ports:
  - port: 80
    nodePort: 30000
  selector:
    app: nginx-ingress







          

      

      

    

  

  
    
    Install VirtualBox and Vagrant
    

    
 
  
  

    
      
          
            
  
Install VirtualBox and Vagrant

| TOOL  | VERSION  |  LINK |
|---|---|---|
| VirtualBox  |   5.1.26  |   https://www.virtualbox.org/wiki/Downloads |
| Vagrant  | 1.9.7   | https://www.vagrantup.com/downloads.html   |




Importing a  VM Template

vagrant box list

vagrant box add ubuntu/xenial64 ubuntu-xenial64.box

vagrant box list








Provisioning Vagrant Nodes

Clone repo if not already

git clone https://github.com/schoolofdevops/lab-setup.git






Launch environments with Vagrant

cd lab-setup/kubernetes/vagrant-kube-cluster

vagrant up





Login to nodes

Open three different terminals to login to 3 nodes created with above command

Terminal 1

vagrant ssh kube-01
sudo su





Terminal 2

vagrant ssh kube-02
sudo su





Terminal 3

vagrant ssh kube-03
sudo su





Once the environment is setup, follow Initialization of Master onwards from the following tutorial
https://github.com/schoolofdevops/kubernetes-fundamentals/blob/master/tutorials/1.%20install_kubernetes.md





          

      

      

    

  

  
    
    <no title>
    

    
 
  
  

    
      
          
            
  file: storageclass.yml

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: standard
provisioner: kubernetes.io/aws-ebs
parameters:
  type: io1
  zones: us-east-1b
  iopsPerGB: "10"





file: pvc.yml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: redis-data
  annotations:
    volume.beta.kubernetes.io/storage-class: standard
spec:
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 10Gi





file: pvc-dep.yml

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: redis
spec:
  replicas: 1
  template:
    metadata:
      labels:
        application: redis
        version: 3.2.5
    spec:
      containers:
      - name: redis
        image: redis:3.2.5
        volumeMounts:
        - mountPath: /data
          name: redis-data
      volumes:
        - name: redis-data
          persistentVolumeClaim:
            claimName: redis-data







          

      

      

    

  

  
    
    <no title>
    

    
 
  
  

    
      
          
            
  apiVersion: v1
kind:
metadata:
spec:





https://kubernetes.io/docs/api/



          

      

      

    

  

  
    
    Rolling updates with deployments
    

    
 
  
  

    
      
          
            
  
Rolling updates with deployments

Update the version of the image in vote_deploy.yaml

File: vote_deploy.yaml

...
    app: vote
    spec:
      containers:
      - image: schoolofdevops/vote:movies





Apply Changes and monitor the rollout

kubectl apply -f vote-deploy.yaml
kubectl rollout status deployment/vote








Rolling Back a Failed Update

Lets update the image to a tag which is non existant. We intentionally introduce this intentional error to fail fail the deployment.

File: vote_deploy.yaml

...
    app: vote
    spec:
      containers:
      - image: schoolofdevops/vote:movi





Do a new rollout and monitor

kubectl apply -f vote_deploy.yaml
kubectl rollout status deployment/vote





Also watch the pod status which might look like

vote-3040199436-sdq17   1/1       Running            0          9m
vote-4086029260-0vjjb   0/1       ErrImagePull       0          16s
vote-4086029260-zvgmd   0/1       ImagePullBackOff   0          15s
vote-rc-fsdsd               1/1       Running            0          27m
vote-rc-mcxs5               1/1       Running            0





To get the revision history and details

kubectl rollout history deployment/vote
kubectl rollout history deployment/vote --revision=x
[replace x with the latest revision]





[Sample Output]

root@kube-01:~# kubectl rollout history deployment/vote
deployments "vote"
REVISION    CHANGE-CAUSE
1       kubectl scale deployment/vote --replicas=5
3       <none>
6       <none>
7       <none>

root@kube-01:~# kubectl rollout history deployment/vote --revision=7
deployments "vote" with revision #7
Pod Template:
  Labels:   app=vote
    env=dev
    pod-template-hash=4086029260
    role=ui
    stack=voting
    tier=front
  Containers:
   vote:
    Image:  schoolofdevops/vote:movi
    Port:   80/TCP
    Environment:    <none>
    Mounts: <none>
  Volumes:  <none>





To undo rollout,

kubectl rollout undo deployment/vote





or

kubectl rollout undo deployment/vote --to-revision=1
kubectl get rs
kubectl describe deployment vote









          

      

      

    

  

  
    
    Troubleshooting the Kubernetes cluster
    

    
 
  
  

    
      
          
            
  
Troubleshooting the Kubernetes cluster

In this chapter we wll learn about how to trouble shoot our Kubernetes cluster at control plane level and at application level.


Troubleshooting the control plane




Listing the nodes in a cluster

First thing to check if your cluster is working fine or not is to list the nodes associated with your cluster.

kubectl get nodes





Make sure that all nodes are in Ready state.




List the control plane pods

If your nodes are up and running, next thing to check is the status of Kubernetes components.
Run,

kubectl get pods -n kube-system





If any of the pod is restarting or crashing, look in to the issue.
This can be done by getting the pod's description.
For example, in my cluster kube-dns is crashing. In order to fix this first check the deployment for errors.

kubectl describe deployment -n kube-system kube-dns








Log files


Master

If your deployment is good, the next thing to look for is log files.
The locations of log files are given below...

/var/log/kube-apiserver.log - For API Server logs
/var/log/kube-scheduler.log - For Scheduler logs
/var/log/kube-controller-manager.log - For Replication Controller logs





If your Kubernetes components are running as pods, then you can get their logs by following the steps given below,
Keep in mind that the actual pod's name may differ from cluster to cluster...

kubectl logs -n kube-system -f kube-apiserver-node1
kubectl logs -n kube-system -f kube-scheduler-node1
kubectl logs -n kube-system -f kube-controller-manager-node1








Worker Nodes

In your worker, you will need to check for errors in kubelet's log...

sudo journalctl -u  kubelet










Troubleshooting the application

Sometimes your application(pod) may fail to start because of various reasons. Let's see how to troubleshoot.




Checking the status of Deployment

For this example I have a sample deployment called nginx.

FILE: nginx-deployment.yml

apiVersion: apps/v1beta1
kind: Deployment
metadata:
  name: nginx
  labels:
    app: nginx
spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
        - name: nginx
          image: ngnix:latest
          ports:
            - containerPort: 80





List the deployment to check for the availability of pods

kubectl get deployment nginx

NAME          DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
nginx         1         1         1            0           20h





It is clear that my pod is unavailable. Lets dig further.

Check the events of your deployment.

kubectl describe deployment nginx





List the pods to check for any registry related error

kubectl get pods

NAME                           READY     STATUS             RESTARTS   AGE
nginx-57c88d7bb8-c6kpc         0/1       ImagePullBackOff   0          7m





As we can see, we are not able to pull the image(ImagePullBackOff). Let's investigate further.

kubectl describe pod nginx-57c88d7bb8-c6kpc





Check the events of the pod's description.

Events:
  Type     Reason                 Age               From                                               Message
  ----     ------                 ----              ----                                               -------
  Normal   Scheduled              9m                default-scheduler                                  Successfully assigned nginx-57c88d7bb8-c6kpc to ip-11-0-1-111.us-west-2.compute.internal
  Normal   SuccessfulMountVolume  9m                kubelet, ip-11-0-1-111.us-west-2.compute.internal  MountVolume.SetUp succeeded for volume "default-token-8cwn4"
  Normal   Pulling                8m (x4 over 9m)   kubelet, ip-11-0-1-111.us-west-2.compute.internal  pulling image "ngnix"
  Warning  Failed                 8m (x4 over 9m)   kubelet, ip-11-0-1-111.us-west-2.compute.internal  Failed to pull image "ngnix": rpc error: code = Unknown desc = Error response from daemon: repository ngnix not found: does not exist or no pull access
  Normal   BackOff                7m (x6 over 9m)   kubelet, ip-11-0-1-111.us-west-2.compute.internal  Back-off pulling image "ngnix"
  Warning  FailedSync             4m (x24 over 9m)  kubelet, ip-11-0-1-111.us-west-2.compute.internal  Error syncing pod





Bingo! The name of the image is ngnix instead of nginx. So fix the typo in your deployment file and redo the deployment.

Sometimes, your application(pod) may fail to start because of some configuration issues. For those errors, we can follow the logs of the pod.

kubectl logs -f nginx-57c88d7bb8-c6kpc





If you have any errors it will get populated in your logs.







          

      

      

    

  

  
    
    The first chapter
    

    
 
  
  

    
      
          
            
  
The first chapter

\label{cha:a_chapter}

This is the first paragraph of the Softcover Markdown template produced with the \softcover\ command-line interface. It shows how to write a document in Markdown, a lightweight markup language, augmented with the kramdown [http://kramdown.gettalong.org/] converter and some custom extensions, including support for embedded \PolyTeX, a subset of the powerful \LaTeX\ typesetting system.[^pronunciation] For more information, see The Softcover Book [http://manual.softcover.io/book]. To learn how to easily publish (and optionally sell) documents produced with Softcover, visit Softcover.io [http://softcover.io/].

This is the second paragraph, showing how to emphasize text.[^sample-footnote] You can also make text bold or emphasize a second way. Via embedded \PolyTeX, Softcover also supports colored text, such as \coloredtext{red}{red}, \coloredtext{CornflowerBlue}{cornflower blue}, and \coloredtexthtml{E8AB3A}{arbitrary HTML colors}.


A section

\label{sec:a_section}

This is a section. You can refer to it using the \LaTeX\ cross-reference syntax, like so: Section~\ref{sec:a_section}.


Source code

This is a subsection.

You can typeset code samples and other verbatim text using four spaces of indentation:

def hello
  puts "hello, world"
end





Softcover also comes with full support for syntax-highlighted source code using kramdown's default syntax, which combines the language name with indentation:

{lang="ruby"}
def hello
puts "hello, world"
end

Softcover's Markdown mode also extends kramdown to support "code fencing" from GitHub-flavored Markdown:

def hello
  puts "hello, world!"
end





The last of these can be combined with \PolyTeX's codelisting environment to make code listings with linked cross-references (Listing~\ref{code:hello}).

\begin{codelisting}
\codecaption{Hello, world.}
\label{code:hello}

def hello
  puts "hello, world!"
end





\end{codelisting}




Mathematics

Softcover's Markdown mode supports mathematical typesetting using \LaTeX\ syntax, including inline math, such as ( \phi^2 - \phi - 1 = 0, ) and centered math, such as
[ \phi = \frac{1+\sqrt{5}}{2}. ]
It also supports centered equations with linked cross-reference via embedded \PolyTeX\ (Eq.~\eqref{eq:phi}).

\begin{equation}
\label{eq:phi}
\phi = \frac{1+\sqrt{5}}{2}
\end{equation}

Softcover also supports an alternate math syntax, such as {$$}\phi^2 - \phi - 1 = 0{/$$}, and centered math, such as

{$$}
\phi = \frac{1+\sqrt{5}}{2}.
{/$$}

The \LaTeX\ syntax is strongly preferred, but the alternate syntax is included for maximum compatibility with other systems.






Images and tables

This is the second section.

Softcover supports the inclusion of images, like this:

[image: Some dude.]

Using \LaTeX\ labels, you can also include a caption (as in Figure~\ref{fig:captioned_image}) or just a figure number (as in Figure~\ref{fig:figure_number}).

[image: Some dude.\label{fig:captioned_image}]

[image: \label{fig:figure_number}]


Tables

Softcover supports raw tables via a simple table syntax:

|HTTP request | URL | Action | Purpose |
| GET | /users | index | page to list all users |
| GET | /users/1 | show | page to show user with id 1 |
| GET | /users/new | new | page to make a new user |
| POST | /users | create | create a new user |
| GET | /users/1/edit | edit | page to edit user with id 1 |
| PATCH | /users/1 | update | update user with id 1 |
| DELETE | /users/1 | destroy | delete user with id 1 |

See The Softcover Book [http://manual.softcover.io/book/softcover_markdown#sec-embedded_tabular_and_tables] to learn how to make more complicated tables.






Command-line interface

Softcover comes with a command-line interface called softcover. To get more information, just run softcover help:

$ softcover help
Commands:
  softcover build, build:all           # Build all formats
  softcover build:epub                 # Build EPUB
  softcover build:html                 # Build HTML
  softcover build:mobi                 # Build MOBI
  softcover build:pdf                  # Build PDF
  softcover build:preview              # Build book preview in all formats
  .
  .
  .





\noindent You can run softcover help <command> to get additional help on a given command:

$ softcover help build
Usage:
  softcover build, build:all

Options:
  -q, [--quiet]   # Quiet output
  -s, [--silent]  # Silent output

Build all formats








Miscellanea

This is the end of the template---apart from two mostly empty chapters. In fact, let’s include the last chapter in its entirety, just to see how mostly empty it is:

<<(chapters/yet_another_chapter.md, lang: text)

Visit The Softcover Book [http://manual.softcover.io] to learn more about what Softcover can do.

[^sample-footnote]: This is a footnote. It is numbered automatically.

[^pronunciation]: Pronunciations of "LaTeX" differ, but lay-tech is the one I prefer.







          

      

      

    

  

  
    
    Another chapter
    

    
 
  
  

    
      
          
            
  
Another chapter

This is another chapter.[^numbering] It also includes a little code fencing, mainly to test an edge case for the sake of the Softcover test suite:[^why_code_fencing]

$ find . \( -name \*.gemspec -or -name \*.jpg \) -type f





[^numbering]: Footnotes are numbered on a per-chapter basis.

[^why_code_fencing]: The test suite uses the template files to stress-test the build system. In this case, there used to be a bug when math syntax appeared in a non-math context. Including the code fencing as above ensures that any regressions will cause the test suite to fail.





          

      

      

    

  

  
    
    Preface
    

    
 
  
  

    
      
          
            
  
Preface

This is an example of "frontmatter", which comes before the main text of the book.





          

      

      

    

  

  
    
    Yet another chapter
    

    
 
  
  

    
      
          
            
  
Yet another chapter

This chapter left intentionally blank





          

      

      

    

  
_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/plus.png





_images/Kubernetes-Dashboard.png
